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We study a two-layer neural network made of N and M(N) neurons, producing
a two-way association search for a family of p(N) patterns, where each pattern
is a pair of two independent sub-categories of information having respectively N
and M(N) components. In terms of the ratio c=limNQ. M(N)/N, we study
the retrieval capability of this network and show that there exists, at least, three
regimes of association for which we determine the evolution of the threshold
ac(c) of the storage capacity a=limNQ. p(N)/N.
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1. INTRODUCTION

The Hopfield model [H] of associative memory has been thoroughly
investigated in the past [A, AGS, N]. However this seemingly seductive
approach to the modelization of the brain, acting as a learning and retrie-
val system, exhibits an obvious drawback in that it does not allow for
a categorization of the stored informations. Indeed, our souvenirs for
example are clearly made of different pieces of information, we record
people by their names, physiognomy, social behaviors and so on, in such a
way that any one of these characteristics may lead to the recollection of an
individual.

Several attempts to take into account compound information in the
Hopfield model have been proposed, either by a change of the synaptic



couplings between neurons or by a modification of the structure of the
underlying state space.

Introduction of correlations between stored patterns [GTA] was
among the first works in this direction. The Hopfield model with correlated
patterns has received much attention lately both through numerical and
mean field type approaches [GTA, CT] and also by rigorous methods [N,
GLMR2, GLMR3]. It is worth mentioning that this generalization of the
Hopfield model originated in neurophysiological experiments performed on
a primate [M, SM] where it was observed that a structurally uncorrelated
temporal sequence of patterns is converted into spatially correlated attrac-
tors in the monkey brain.

Another early proposal (Parga, Virasoro, 1986) to take these features
into account was the introduction [PV] of a hierarchical tree-based struc-
ture to store the patterns, without imposing their a priori orthogonality.
The method relies on the spin glass mean field theory and requires only a
slight modification of the Hebb’s learning rule. It is closer, in the neural
science point of view, to the way our brain processes information [Kl] but
requires more investigations concerning its storage capability. In [S]
(Sourlas, 1988) introduced a multi-layer neural network for hierarchical
patterns in which greater storage capacities than the common one,
ac ’ 0.14, was predicted (see [H]).

A different hierarchical storage method was considered in [B] for a
network of N neurons organized in L different modules, each comprising
Nk neurons (;L

1 Nk=N). Each module codes for a specific part of the
pattern information. In the case of a two-modules model, the author exhi-
bits interesting mean field behaviors concerning the stability of the com-
pound information stored. For example, the stability of the patterns in-
creases when the fraction of category coding neurons decreases. Also, when
damage is done to the synaptic junctions, there exists a threshold above
which the network recall the category of the patterns but not its details.

In this article we are interested in the study of a different approach
from the two cases above. This approach was proposed by (Kosko, 1988)
in [K] and called a bidirectional associative memory (BAM). The aim here
is to learn and retrieve a pair of associated patterns by a two-layer non
linear neural network producing a two-way association search.

p patterns {Xm}m ¥ {1, ..., p} are to be stored in a two layers network (s, y)
of respectively N and M neurons, s={si}i ¥ {1, ..., N}, y={yj}j ¥ {1, ..., M} where
no synaptic junctions exist between neurons on a same layer. Each pattern
Xm is a pair (tm, gm), where tm is an N-vector (tm1, ..., tmN) of i.i.d. (Z2)-r.v. to
be stored in the s-layer and likewise, gm is an M-vector (gm1, ..., gmM) of i.i.d.
(Z2)-r.v. to be stored in the y-layer. tm and gm coding for different pieces
(categories) of the same information.
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In [K] a Hebb learning rule is used which updates successively the
configurations in each layer according to the value of the neurons states of
the other layer. The simulation of a small network (N=15, M=10, p=4)
has lead to the conclusion that, activating the dynamic of the network with
an input configuration (s, y) where, either s or y is ‘‘close enough’’ from
one of the categories of a stored pattern, say Xm0, then the network quickly
evolves to a stable fixed point corresponding to the perfect retrieval of Xm0.
This phenomenon is called ‘‘two-patterns reverberation’’ by the author.
Moreover, with the same data as above, Kosko observed that if the
network dynamics is activated with an initial configuration (s, y)=
(tmi, gmj), i ] j then the retrieved state corresponds to the pattern (tmi, gmi).
This is explained in [K] by claiming that the fixed point represents a
system energy local minimum and by the fact that N is larger than M.
Nevertheless, the relative magnitude of M and N was not clearly elucidated
there.

In [KPS] the phase diagram of a stochastic version of this model is
investigated through mean field theory and the replica method, following
ideas from [AGS]. These authors observe that the storage capacity increa-
ses with respect to the ratio M/N, N \ M and get a threshold storage
capacity less than ac ’ 0.14 (see [H], [AGS]). However, referring to the
mean field computations in [S], one would expect higher threshold storage
capacities.

We have studied rigorously the BAM model in the limit:
limNQ. M(N)/N=c ¥ (0, 1] for the following three regimes of association
(hereafter denoted RI, RII, RIII):

• in RI (resp. RIII), a retrieved configuration (s, y) is such that s (resp.
y) is almost perfectly aligned with one of the patterns, say tm (resp. gm) and
y (resp. s) only partially aligned with the corresponding gm (resp. tm),
m=1, ..., p,

• in RII, a retrieved configuration (s, y) is such that both s and y are
only partially aligned with, respectively, gm and tm, m=1, ..., p.

Among the results, we get that there exists a finite threshold capacity ac(c)
satisfying

• in RI, for c > c0 ’ 0.3, ac(c) decreases from ac(c0) ’ 0.076 to
ac(c=1) ’ 0.056,

• in RII, ac(c) increases and then decreases as a function of c in the
interval (0, 1],

• in RIII, ac(c) is an increasing function of c in the interval (0, 1].
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ac(c=1) is quite close to the Newman value 0.056 for the standard
Hopfield model [N].

2. DEFINITIONS AND RESULTS

The patterns (tm, gm); m ¥ {1, ..., p(N)} to be stored in the network are
chosen in the configuration space of the activity states of the N+M(N)
neurons (s, y) ¥ {±1}N é {±1}M, organized as a two layers neural
network viewed as a complete bipartite graph.

The learning of the pattern configurations runs through a non-linear
mechanism involving weighted synaptic junctions between neurons i ¥ LN —
{1, ..., N} on layer s and j ¥ LM — {1, ..., M} on layer y, whose expressions
are given by

Jij= C
p

m=1
tmi g

m
j (2.1)

The synaptic matrix (2.1) allows to define an energy function for this
system [K]

HN, M(s, y)=−
1
N

C
N

i=1
C
M

j=1
Jijsiyj (2.2)

We introduce the local overlaps of the configuration (s, y) with the pattern
(tm, gm) as

˛Sm
N(s)=

1
N

C
N

i=1
sit

m
i

TmM(y)=
1
M

C
M

j=1
yjg

m
j

, m=1, ..., p (2.3)

so that the energy function takes the form

HN, M(s, y)=−M(N) C
p

m=1
Sm
N(s) TmM(y) (2.4)

Obviously, the configuration (s0, y0) given by s0i=t
m
i , i ¥ LN and y0j=g

m
j ,

j ¥ LM minimizes the energy (2.4).
The information stored in the network is carried by synaptic junctions

between neurons on the two layers and the stable configurations around
the local minima (s0, y0) of the energy function, are called attractors. We
define the storage capacity a as

a= lim
NQ.

p(N)/N (2.5)
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The results derived in [K] and further investigated in [KPS] suggest that
the retrieved configurations are fixed points located near each stored
pattern Xm=(tm, gm) and, furthermore, it was noticed in [K] that this
retrieval is quite robust against damages (i.e. errors) imposed on the com-
ponents of one or both pattern categories.

In order to state our result, some definitions are necessary :

Definition 2.1. Given two configurations s, sŒ in ZN2 , we call
d(s, sŒ) their Hamming distance. The sphere of radius d1 ¥ (0, 12) centered
on s is defined by:

S(s, d1)={sŒ ¥ ZN2 : d(s, sŒ)=Nd1NM}

where Nd1NM is the greatest integer less that or equal to d1N (denoted d1N
hereafter).

Definition 2.2. Let tm ¥ ZN2 , we call sJ1 the configuration whose
components disagree with those of tm on the set J1 … LN

(sJ1)i=3
−tmi : i ¥ J1
tmi : i ¥ Jc1=LN0J1

(2.6)

where |J1|=d1N, d1 ¥ (0, 12). Likewise for the configuration yJ2 ¥ S(gn, d2),
gn ¥ ZM2 , J2 … LM : |J2|=d2M, d2 ¥ (0, 12).

Definition 2.3. The configuration (s, y) is said to be stable if there
exists E > 0, d1 > 0 and d2 > 0 such that:

HN, M(s, y) [ min
sŒ ¥ S(s, d1
yŒ ¥ S(y, d2)

HN, M(sŒ, yŒ)− EM(N) (2.7)

Recall that c=limNQ. M(N)/N ¥ (0, 1]. Our main result is contained in
the following

Theorem 2.1. For c > c0 > 0 there exists strictly positive thresholds
ac(c) so that for any a < ac(c), one can find d1 ¥ (0, 12), d2 ¥ (0, 12) and some
E > 0 (each depending on a) so that a strictly positive function C(c) can be
found such that:

P
t, g
5 3
1 [ m [ p

{HN, M(tm, gm)− min
s ¥ S(tm, d1)
y ¥ S(gm, d2)

HN, M(s, y)} < − EM(N)6

\
N large

1−e −C(c)N (2.8)
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Remark 2.1. For c > c0 > 0, the bound we obtain for the probability
P
t, g

implies, by applying the Borel–Cantelli Lemma that, if (tm, gm)m ¥ {1, ..., p}
is a sequence of patterns such that a < ac(c) then with probability 1, the
event

{HN, M(tm, gm) [ min
s ¥ S(tm, d1)
y ¥ S(gm, d2)

HN, M(s, y)− EM(N)} occurs i. o.

Comments on the theorem. Let d1c(ac(c)), d2c(ac(c)) the upper
bounds on d1 and d2 as stated in the theorem. Introducing constants c0 and
c1 such that 0 < c0 < c1 < 1 then the regimes RI, RII, RIII defined in Section
1 are such that

• RI is characterized by 0 < d1c < c0 d2c. In this domain, the threshold
capacity ac(c) decreases from ac(c0 ’ 0.3) ’ 0.076 to ac(c=1) ’ 0.056 (see
Fig. 1).

• RII is such that c0 d2c < d1c < c1 d2c. There, the threshold capacity
ac(c) increases and then decreases in the interval (0, 1].

• RIII corresponds to 0 < c1 d2c < d1c. Here, the threshold capacity ac(c)
increases in the interval (0, 1] (see Fig. 1).

Proof. We only outline the main ideas of the proof of Theorem 2.1
as it follows closely the techniques initiated in [N]. See [FMP, BG] for

Fig. 1. Threshold capacity ac(c). The different regimes of behaviour of the BAM are
outlined. RI: upper shaded part, RII: intermediate domain, RIII: lower part bounded by dotted
lines. In embedded windows: minima of G(tmin, dc(ac(c))).
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other straightforward applications to the Potts–Hopfield and diluted
Hopfield models, [L] for an extension to correlated patterns and also
[Lou, T] for further improvements of Newman’s result. Let us mention
that very recently, using Fourier transform techniques, a new rigourous
bound (ac 4 0.113) on the critical storage capacity of the Hopfield model
has been found [FST].

In order to estimate the probability appearing in Eq. (2.8), on uses
large deviation theory. The proof amounts at evaluating the difference in
energy between a pattern (tm, gm) and the configurations (s, y) located on
spheres S(tm, d1), S(gm, d2) centered on this pattern.

This leads (using exponential Chebyshev–Markov inequality) to
expectations with respect to Gaussian random variables, through the use of
the law of large numbers and central limit theorem. One arrives eventually
at the following bound for formula (2.8)

P
t, g
5 3
1 [ m [ p

{HN, M(tm, gm)− min
s ¥ S(tm, d1)
y ¥ S(gm, d2)

HN, M(s, y)} < − EM(N)6

\ 1− inf
t \ 0

{e−NG(a, c, d1, d2)} (2.9)

where

G(a, t, c, d1, d2)=−t
`c

2
[E−(1−(1−2d1)(1−2d2))]

+d1 log d1+(1−d1) log(1−d1)

+c(d2 log d2+(1−d2) log(1−d2))

+
a

2
[log(1−(1−d1) d2 t2)+log(1−(1−d2)d1 t2)] (2.10)

Then, for each positive c ¥ (0, 1], one has to find a threshold capacity ac(c)
and upper bounds d1(ac, c) and d2(ac, c) for d1 and d2, a < ac(c), such that
the function G(a, t, c, d1, d2) reaches its minimum (in t) : C(c), which is
nothing but the strictly positive function appearing in Theorem 2.1. This is
completed numerically, as in [N]. The threshold capacities ac(c) are
plotted in Fig. 1.

CONCLUSION

This study of the stability of the attractors in Bidirectional Associative
Memories reveals that around any of the local energy minima Xm=(tm, gm),
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m=1, ..., p (made of the two categories of information tm and gm), the
BAM network retrieves, among others, the particular configurations (s, y)
where s (resp. y) agrees with the category tm (resp. gm) and the other y

(resp. s) disagrees with the category gm (resp. tm) on a set of components
whose cardinality depends on the threshold capacity.

It means that the bidirectionality allows to retrieve perfectly one of the
categories for c greater than a certain threshold c0. We recall that in the
case of the standard (unidirectional) Hopfield model, the retrieval is perfect
only when the storage capacity vanishes as N goes to infinity (see [A]).
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